本项就电路上的噪声对策进行说明。开关电源的设计时,必须进行噪声的评估和对策。
首先略为重温与噪声相关的术语。
EMI(Electro Magnetic InteRFerence):电磁干扰
电波和高频电磁波成为噪声,影响电子设备等,或是会造成影响的电磁波。
-传导噪声:经由线缆和基板配线传导的噪声
> 差模(普通模式)噪声:发生在电源线之间,且传送方向和电流相同的噪声
> 共模噪声:透过金属外壳等,穿过游离电容等,回到信号源头的噪声
-辐射噪声:释放到空气中的噪声
EMS(Electro Magnetic Susceptibility):电磁抗扰性
指即使受到电磁波的妨碍、干扰(EMI:传导噪声及辐射噪声)也不会出现损坏的能力、耐受度。
EMC(Electro Magnetic Compatibility):电磁兼容性
EMI+EMS。辐射(Emission:放出)对策和抗扰性(Immunity:耐性)的兼容对策。
EMI从路径来看,分成传导噪声和辐射噪声,传导噪声根据传导方式,又可以再细分成差动模式噪声和共模噪声。粗略概述以掌握此类zui基本的知识。
EMI对策
开关电源电路的EMI会影响其他电路及,所以必须实施EMI对策。基本上,在大电流开关节点和线路,增加整合阻抗和具备旁路/过滤功能的电容器、电阻/电容器电路。
1) C12、R17:输出整流二极管增加RC缓冲电路
和输入缓冲相同,降低ON/OFF时产生的峰波。关于输入缓冲请参照这里。C12选择500V 1000pF、R17选择10Ω 1W左右。
2) C10:1次侧和二次侧间增加Y-电容器
称为Y-电容器(Y-Capacitor)的电容器,增加在1次侧和二次侧的接地之间。对此,经由绝缘变压器的绕组间电容器,是降低1次侧的开关噪声使二次侧产生的共模噪声的代表性方法之一。Y-电容器的额定电压必须和变压器的绝缘耐压同等。电容值选择2200pF左右。
3) C11:MOSFET Q1的漏极-源极间增加电容器
为降低起因于高速开关OFF时的浪涌,而在MOSFET的漏极-源极间增加电容器的方法。这也是缓冲电路的一种,但是,会增加损耗,因此必须注意温度上升状况。在这里,使用耐压1kV的10~100pF电容器。
上述的部件常量为开始时的参考值。必须先确认噪声造成的影响后再加以调整。
输出噪声对策
不用说,开关电源的输出电压上存在着取决于开关频率的纹波,以及高频谐波、电感和电容器所引起的噪声。当这些噪声造成困扰时,可以在输出增加LC滤波器有效解决该困扰。
以电感L为10μH、C10为10μF~100μF作为开始时标准值,仔细观察噪声后再加以调整。
以上是主要的噪声对策。不论何种方式,都必须测量噪声、确认噪声对设备造成哪些影响。规划测量环境和装置,是确实测量噪声上不可或缺的。无法定量测量值时,或许可以从设备的S/N等、性能层面,来掌握是否会造成影响。
这里提到的对策,属于适用在电源电路构造上的噪声对策。噪声的产生也和基板布局、部件配置、部件性能等有关系。视实际情况而定,将LC滤波器由简单的L型,升级成π型和T型,以及在电路基板上加必须的屏蔽等。
此外,视设备的规格而定,还必须符合例如国际无线电干扰特别委员会(CISPR)规范等噪声、设备相关规范。必须遵照规范规格,是zui初设计时就必须谨记之要事。
本项以“绝缘型反激式转换器电路设计”为主题,作为电路设计的zui后说明。